20/11/2015 Malattie respiratorie
HYALURONAN SERVES A NOVEL ROLE IN AIRWAY MUCOSAL HOST DEFENSE
2001

Hyaluronan serves a novel role in airway mucosal host defense.

Abstract

Enzymes secreted onto epithelial surfaces play a vital role in innate mucosal defense, but are believed to be steadily removed from the surface by mechanical actions. Thus, the amount and availability of enzymes on the surface are thought to be maintained by secretion. In contrast to this paradigm, we show here that enzymes are retained at the apical surface of the airway epithelium by binding to surface-associated hyaluronan, providing an apical enzyme pool 'ready for use' and protected from ciliary clearance. We have studied lactoperoxidase, which prevents bacterial colonization of the airway, and kallikrein, which mediates allergic bronchoconstriction that limits the inhalation of noxious substances. Binding to hyaluronan inhibits kallikrein, which is needed only in certain situations, whereas lactoperoxidase, useful at all times, does not change its activity. Hyaluronan itself interacts withthe receptor for hyaluronic acid-mediated motility (RHAMM or CD168) that is expressed at the apex of ciliated airway epithelial cells. Functionally, hyaluronan binding to RHAMM stimulates ciliary beating. Thus, hyaluronan plays a previously unrecognized pivotal role in mucosal host defense by stimulating ciliary clearance of foreign material while simultaneously retaining enzymes important for homeostasis at the apical surface so that they cannot be removed by ciliary action.

http://www.ncbi.nlm.nih.gov/pubmed/11641244